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PREFACE 

This Memorandum presents a method of estimating the bearing angle 

of an incoming plane wave using an arbitrary ground array of sensors. 

It was prepared for : he Advanced Research Projects Agency's VELA 

Analysis study.  The project is a broad and continuing system-oriented 

study of the detection of nuclear bursts above the ground. 

The Memorandum should be useful to those concerned with acoustics 

ana seismology, as well as those interested in data processing. 
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SUMMARY 

This   study   is  concerned  with  developing data   processing 

techniques   to  obtain bearing  angle   estimates  of   plane   sonic  waves 

using arbitrary   ground  arrays   of  microphones.     The   evaluation of 

the  accuracy  obtainable as measured   by   the rms   bearing angle  error 

is   computed   in detail   for  a   16-station  square  array.      A  novel 

feature   of   the  method  is   that   the   ground   trace  velocity  of   sound  need 

not   be  known  a   priori  or  measured   independently,   but   can be derived 

from  the   same measurements  as   the   bearing angle. 

4 
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I.  INTRODUCTION 

STATEMENT OF THE PROBLEM 

Given an array of nondirectional microphones which measure sound 

pressure, it is desired to measure the bearing angle of an arriving 

plane acoustic wave in the infrasonic region;  that is, in the frequency 

range of from .1 to 1 cps.  The array may be of arbitrary geometry in 

the ground plane.  A novel aspect of the problem is that the local 

velocity of sound propagation is not presumed known except for a 

nominal value of c = 344 m/sec.  The actual velocity may deviate by 

5 to 10 percent.  The local ground trace of sound propagation is also 

obtainable from the measurements as described; however, estimates of 

the elevation angle of the plane wave are not. 

DESCRIPTION OF THE MODEL 

The plane-acoustic wave is presumed to be generated a large 

distance from the array.  As the sound wave is propagated through the 

atmosphere, the wave undergoes changes in both orientation of the phase 

plane and amplitude.  The amplitude decreases slightly due to atmos- 

pheric absorption, but primarily due to the dilution of the sound 

energy over a greater volume.  Superimposed on these systematic effects 

there are also random changes in phase at each point on the phase plane 

caused by turbulence in the atmosphere.  Thus, the wave which arrives 

at the array is not strictly a plane wave.  The surfaces of constant 

phase are taken to consist of a plane plus randoir, deviations from the 

plane.  An excellent discussion of the propagation properties of 

infrasonic sound waves through the atmosphere is given in Ref. 1. 
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The acoustic plane wave energy (noted as the signal) is presumed 

to be small compared to the atmospheric turbulence pressure (noted as 

noise) in the same frequency range.  It is assumed that the signal has 

been detected by other means and that the gross direction (within, 

say, one quadrant) of the wave has been determined.  This Memorandum 

is therefore not concerned with the detection problem but with the 

improvement of the estimate of the local bearing angle of the sound 

wave.  The data at each array point are the result of processing the 

received dato through noise-reducing line microphones to improve the 

signal-to-noise ratio.  This Memorandum does not, however, attempt to 

evaluate the nature of the background noise or the effects of various 

data processing operations on the statistical properties of the signal 

and noise.  These j.roblems will be considered in future studies.  A 

class of bearing estimation methods are developed and the effect of 

two specific methods is evaluated for certain standardized error models. 

The measure of merit used is | normalized standard deviation of bearing 

angle error, noted as L(t),  A set of computation;-, of L(e) is performed 

for a square array consisting of If) equally spaced array points. 
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11.  DISCUSSION OF THE ESTIMATION METHOD 

The basic data required are the transit time of the wave from a 

fixed station or array point with coordinates (x , v ; to each of the 
o ' o 

other stations with coordinates (x., v.).  Let this time he noted as 
I       i 

T..     Then  the  estimation  process   involves   the   following:     If  each  of 

the   values of T.   is  plotted   in  the   (X,   Y)   plana 

x    - x y    - y 

where  d  is a normalizing   ,cale  factor,   at   the value   (X.,  Y  ),   it  will 

be   shown  that   the   transit   time   for a  plane wave  can be   represented  as 

-   = A.X + A0Y + kJDl + A.X2  + A^Y2 (1) 
12 3 4 5 

Th e  bearing angle   9  and   the  ground velocity  C     are  estimated   from   the 

coefficients A    and A-.     The  process   then  involves  estimating   the 

coefficients A.   by  curve   fitting of Eq.    (1)   to   the  data   set 

•,•,;,     i  =  1,   2,    ...,   N   for  an   (N + 1)   station  array.     Let   the 

measured value of      .   be   given by 

T.   = -.  + AT. (2) 
ill 

where  "     is   the  "true"   transit   time  given  by  Eq.   (1)  and AT.   is   the 
i 1 

random error  in   transit   time  due   to  such  causes  as   initial   phase 

errors  or deviation  from  the  plane  phase  surface,  and errors  in 

estimating T.   from   the  processing of  signals   from   the array micro- 

phones.     As  an  example,   an obvious method  of  estimating T.   Li  by 

cross  correlation.     That   is 

•- 
■ * 
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i  max 
(3) 

+t 
i r 

P(T) = lim — I  s (u) s. (u + T) du 
T 2tJ   o    i 

t - 00   -t 

where s. is the observed signal from the i  array point and s  is 

the observed signal from the reference array point.  The observed T. 

and the statistics of AT. will be determined by such factors as 
i 

the actual interval of time over which the cross correlation is po rfomu'il; 

whether the computation of the cross correlation is for sampled data 

or for continuous data, and the sampling rates; the time and space 

correlation properties of both the signal and noise components of the 

observed signal; and the difference in the initial timing errors of 

each observed signal due to initial phase errors of the plane wave. 

The above effects, as well as alternate methods for generating 

the T|i will be considered in subsequent studies.  For the purpose of 

this study, the random variable AT. is assumed to have the followinK 

properties 

E(AT.)    = 0 

ECAT. AT,.) = o 6.,. 

ECA'. AT .) = .2 ^ 

Case A 

Case B 

(4) 

where E( ) signifies the expected value and 6  = 1, i - j; - 0, 

i  j.  The quantity v.. !■ a normalized correlation coefficient and 

is assumed to have the form 

♦u = expi-rij/kl 
, th    .th   ... 

where r  is the normalized distance between the i  and j  station 
ij 

(5) 



r. . =V(X. - X.)  + (Y. - Y.)2 
IJ     1   J       I   J 

and k is a constant -■ 0. 

The coefficients A. of Eq. (2) are obtained by generalized 

least-squares procedures as follows:  Let N + 1 be the number of 

stations so that the number of transit times T. measured from the 

reference station is N.  Define an N * N positive, definite, symmetric 

matrix p with elements fp   ]•  Then let L ru,v 

N        N 

Q= L   i (Ti " V pij(Tj - V (6) 

The values  of A.   are  selected which minimize Q. 

When   the   following conditions  hold,   the   solutions  arc  as   indicated: 

p  =   I   (identity matrix)   -   least-squares   solution (^a) 

p  =   diag  {p..}   = weighted   least-squares   solution (7b) 

p  =   {p       ) ■  generalized weighted   least-squares  solution (7c) 
u, v 

p\|r  =   I  =  minimum variance   solution (7d) 

The  general   formulation   for  Eq.   (7c)   is   shown,   from which  Eqs.   (7a), 

(7b),   and   (7d)   are  given as   special   cases.     Computations  of L(9)   are 

performed   for  the   square  array   consisting of   16  equally   spaced arrays 

separated  by  distance  d  between x  and  y  coordinates  of  adjacent   stations. 

Similar computations  are performed   for  the   linear case   (A    =  A    =  A    = 

0)   and   for  certain  subsets  of  stations   to measure   the   improvement 

rate   in L(0)   as more  stations  are  processed. 

CORRELATION  MATCH  VERSUS MISMATCH 

The  effects  of mismatching  the weighting matrix  p   and   the AT. 

^9*1*— 99B 



correlation matrix _ are computed as follows 

Case I:   p ■ I,  ., «iven by Eq. (4), Case B; k > Ü 

Case 11:  p - ■.-I;        , given by Eq. (4), Case B;  k> 0 

Tbat is, the AT. data correlation is actually as given by Eq. (■}) , 

but a least-squares solution Eq. (7a) is used.  Note that as k - U, 

min(r..) fixed, i i   j, ■ . I, so that the solution for the A. approaches 

the matched condition given by Eq. (7d), i.e., Case II.  The matched 

condition is optimum in the following sense.  The estimates A obtained 
i 

are random variables with zero mean and covariance matrix B = fB   ] u.v 
^ u,vJ 

1,2,...5.  B is positive definite (in the quadratic case, A , A., 

A  •' U) and ■ the covariance matrix of any other linear unbiased 

estimator of A' ■ (A , A , ... A ;. 

Thus, a comparison of the values of L(9) for the matched and 

mismatched case shows how much is gained by using a minimum variance 

estimator as opposed to a least-squares estimator.  Comparison of the 

subsets N = 3, 7, 15 (linear) and N = 7, 15 (quadratic) shows how 

much is gained by using the additional stations.  Finally, a comparison 

of L(9) for the quadratic curve fit and the linear curve fit shows 

how much additional root mean square error is caused in assuring an 

unbiased estimate of the bearing angle 9.  It may be desirable to 

accept a linear model for Eq. (1; and a small bias in 9 with smaller 

rms. 

AÜVANTACES OF CENERALITY OF METHOD 

The technique does not depend on the specific geometry of the 

array.  Thus, the method lends itself to field data measurement 
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procedures   since  droppitiK  bad   data  does   not   upset   the   computations. 

Further  unreliable  data can  be weighted   to have   less  effect. 

In  Appendix  A   the   solution   for   the  coefficients  A.    is   given   in 

terms  of   the  observations  T. .      'Hie   equations   for   the   covariance matrix 

B   required   to   evaluate   the   variances  of  9  and  c     are   also  derived. 

In  Appendix  B   ,he   justification   for  Eq.   (1)   and   the   interpretation 

of   the   coefficients   in   terms   of   the   geometry  of   the   plane  wave  and 

local  meteorological   conditions  are   shown.     The  condition   for accepting 

a   linear model   is  derived;   that   is,   setting A-  =   A4   =  A5 ;:  ü   in 

Eq.   (1). 

In Appendix  C   the  normalized   rms  bearing angle   error L(0)   is 

derived   in   terns  of   the  covariance matrix  B of   the  parameter estimates 

A.     The   ground   trace   transit   time   to   travel   the  distance  d  given  by 

the   scale   factor   in  defining  X  and  Y   is  defined  as   T   .     Ih«   normalized 

rms   error   in j   ,   M(e),   is  also  derived   in   terms  of   the   same  variables. 

The   results  are  presented   in   tables   following Appendix  D.     Table   1 

presents   L(e)   for  the  Case   1,   (p ■ I)   versus   selected   values  of k 

for  the   linear case   ft - 0°,   15°,   30°  and  45    and   N -   3,   7,   15.     The 

value  of   the   ratio 

R=   L^L.S.     L(e)min 

is also shown in the table where L(c) .  is the matched processing 

case p ^ = 1.  The value of R, which is = 1, shows the gain obtained 

by using the matched processing.  The same information is presented 

for the quadratic case for N = 7, 15 in Table 2.  In Table 3, the 

same information is presented for M(e) for e = 45 .  As shown in 

- •• 
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Appendix C, H(B)   ■ L(0) for 0=0° and 90° and the maximum 

|M2(e) - L2(e)| occurs at 0 = 45°. 

In Appendix D the computations of M(0) and L(e) for a specific 

square array of sensors is described.  The Fortran program for the 

computations is given.  The results are presented in figures following 

Appendix D.  Figures 3 to 8 are plots of L(9) vetsus 9 for the para- 

meters as plotted for fixed values of k = .125, 4 and 256.  In Fig. 3, 

k = .125 is taken as indicating independent timing errors so that, 

since ^ = I, the least-squares solution is a matched solution.  For 

Fig. 4. k = 4 is taken as a moderately mismatched least-squares 

solution.  In Fig. 5, k = 256 is taken as a heavily mismatched solution. 

For Figs. 6, 7 and 8, the matched solution is presented for the 

corresponding cases of k of Figs. 3, 4 and 5.  Figures 9 and 10 sho\j 

L(e) versus k for fixed 9, for the linear case N = 3, 7 and 15 and 

the quadratic case N = 7, 15.  Figure 9 is for 9=0° and Fig. 10 is 

o 
for 9 = 45 .  Both are for Case I, p = I.  The same data are presented 

in Figs. 11 and 12 for Case II, the matched case for p ^ = I.  Other 

angles are obtainable from Tables 1 and 2.  Note that for Case I, 

L(9) is labeled L(9)    and for Case II, L(9) . .  The value R of 
b*9< mm 

Tables 1 and 2 is given by 

L(e) 
R = -, L(e) 

L.S. > 

mm 

where corresponding values of each of the parameters are used in the 

ratio. 



By inspection of the tables and graphs conclusions can be made 

as to the accuracy in bearing angle obtainable as a function of bear- 

ing angle 9, increasing station numbers, using linear versus quadratic 

curve fitting, the degree of mismatch for the least-squares estimate, 

and the accuracy gain using a minimum variance estimate. 

For example, in Fig. 4 for linear curve fitting there is apparently 

little to be gained at any angle 0 by processing more than N = 3. 

However, in the quadratic case there is a substantial gain by going 

from N = 7 to N = 15.  This gain is dependent on 9 and increases 

o        o 
monotonically from 9=0 to 9 = 45 . 

m* 
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III.  CONCLUSIONS 

A method of est.imaLi.ng the bearing angle of a plane sonic wave 

using an arbitrary  ground array of sensors has been developed.  The 

method does not require knowledge of Liu' propagation velocity of 

sound.  In fact, the ground trace velocity of sound can be derived 

from the data processing. 

Equations for evaluating the rms bearing angle error and the rms 

ground trace timing error were developed. 

Computations of L(9) and M(9), the normalized rms errors, were 

performed for a specific square array consisting of 16 equally spaced 

microphones.  For this array, the computations demonstrate the accuracy 

obtainable in terms of the rms timing errors and provide a basis for 

determining how to efficiently process the field data. 

Subject to certain mild restrictions, e.g., the stations shall 

not all be eclinear and N = 2 (linear case) and N = 5 (quadratic case) 
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Appendix A 

DERIVATION OF  PARAMETER  ESTIMATE  EQUATIONS 

Ql'ADRATIC MODEL 

It will   be  convenient   to  relabel   the variables  of  Eq.   (1)   as 

fol lows:     Let 

Z(
(1)=X..  Z

(2).Y.,  Z(3)=X. Y.,  ZW -X2.   Z.(r)=Y.2 
1 11 11 111 11 1 

Then Eq. (1) can be written in matrix form as 

T - Z A (A-l) 

T = (T.] = N ■ 1 (column matrix), N ^ 5 

A = »A.J = 5 ■ 1 (column matrix), of unknown parameters A.    (A-2) 

Z.[Z(I>. Z
<2) Z(5)-. = N. 5 

and   Z is  an N x   1  column matrix,   u=   1,   2,   ...,   5. 

In particular,   values  of A,   noted  as  A   ,   are  sought which minimize 

the   quadratic   form 

Q =   (Z A  -  '.O'pU A   -  T) (A-3) 

where T is the N * 1 column matrix of observations of T. and the 
i 

prime indicates the transpose.  Upon setting the gradient Q = 0 one 

* (1) 
obtains the well known result 

A* = (Z' p Z)'1 Z' p T (A-4) 

(    )       indicates   the  inverse of   the matrix   (     ),   and       the   transpose 
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where it is assumed that the columns of Z are linearly independent so 

that (Z7 p Z)" exists. 

It  is  easily  demonstrated  that A    is  unbiased;   that is 

ECA*)   = A 
(A-5) 

The  covariance matrix of A     is  given by   (see  Eq.   (4)) 

B,V  = E[[A*  - A][A*  - A]']  = a2«'  P  Z)"1   I1   P   «   P   ZCZ'   p  Z)-1     Case  B        ^ 

= ^(Z'  p  Z)"1   Z'   P2   ZCZ'  p  Z)'1 Case   A 

If  p  = I,   the matched  least-square case gives   O   = I) 

B,V  =  ^V   Z)-1 (A-7) 

It is well known that case 7d, the minimum variance estimator, 

■   •   h (1) 
is given by 

A = (Z' V-1 Z)-1 Z'  v'1 T (A-8) 

and   the  corresponding  smallest  covariance matrix  for  the matched 

correlated case,  corresponding  to pV  = 1,   is 

| « aV r1  Z)"1 (A"9) 

LINEAR MODEL 

The derivation for the linear case is the same as the quadratic 

case except that since A3 = A4 = A5 = 0. the definition of Z in 

Eq. (A-2) is changed to 

. .[»»>. z<2>] 
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and N 2 2 is required.  All equations (A-l) to (A-9) then hold with 

the above changes.  For example, B and B are 2 ^ 2 matrices instead 

of 5 ^ 5 and A is a 2 -» 1 instead of a 5 ^ 1. 

'V *m\ 
--'•. 
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Appendix  li 

DERIVATION OF CURVE  FITTING EQUATIONS 

It  is  assumed   that  a plane  acoustii   w.-ve   is   Incident   at   llie 

array at bearing angle   9 and elevation angle  (^ - 0/,   as  defined   In 

Fig.   1.     Since   the  quadrant   is  assumed known,   there   is   no   loss   in 

generality  by assuming   the wave as   incident   in   the  first  quadrant 

such  that 

o • ei - j,   0 ■ ■ ■ ^ 

The equation of the phase plane is 

(sin 0 cos 0)x + (sin 0 sin 0)y + (cos 0)z - P = 0 (B-l) 

Consider the position of the phase plane when the plane is incident 

at the reference station with coordinates (x , y , 0); then P is 
o  o 

given by 

P = sin t)  "(cos e)x + (sin 0)y 
o oJ 

and the equation of the phase plane is 

sin t  .(cos e)(x - x ) + (sin 9)(y - v )] + (f-os ^) z = 0 (B-2) 
o o 

It is required to compute the transit time of the phase plane 

from its position when incident at station (x , y ) to the time when 
o  o 

the phase plane is incident at (x, y).  Note first that the 

distance of the point (x, y) from the phase plane through station 

(x , y ) as given by Eq. (B-2) is 

■ ■"- ■ •»» 
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P   =  -sin 0 ["(cos  e)(x  -  x  )  +  (sin G) (y   -  y   )] 
o ' o 

where x    and y    are   selected  such   that  -   (x.   - x  )  •-  0,   -   (v     -  v  ) u i        o ■'i       'o 

for each  of   the   station coordinates.      The  transit   time   is   given by 

ray  theory  as     '   ' 

(B-3) 

1  P 
T = -    n(r) dr 

o 0o 

v/here 

(B-4) 

n(r) 
c + v 

n c + v • n 

is the index of refraction at a distance r along the ray from the 

station at (x, y) to the plane, given by Eq. (B-2), formed by a line 

perpendicular to the plane and 

Co = nominal velocity of sound = 344 m/sec  at 20OC 

n = unit vector in the direction of wave propagation, or 
perpendicular to the phase plane 

—• 
v(r) = wind velocity vector 

c = local velocity of sound 

v = v • n projection of v on n 

It is assumed that the medium is horizontally stratified so that 

both c and v arc functions of height only. For a standard atmosphere 

one may write 

(B-5) 

cOO = , ''c 
c + — 
o  dz 0 s z S 10 km (B-6) 

where 

de ~ (2} 
— = -4.4 metcrs/sec/knT ' 

——- *■ 

.  "   * 
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v(z) versus z increases logarithmically with z for heights up to 30 

to 50 meters and then at a slower rate.     However, for the purpose 

of this discussion, wind height will be considered a slowly increasing 

linear function of height which can be represented over the range of 

altitudes of interest as 

v (z) = v (o) + K, I 
n 

(B-7) 

Setting z = r cos 0, Eq. (B-4) becomes 

c  cos 0 j  L  ' c  dz 
o       o      o 

vn(z) 
n    J z - -2—J dz 

dc 

(B-8) 

where p is sufficiently small so that | jj/c  | < < 1, and 

(v (z)/c > < < 1.  Substituting Eq. (B-7) into Eq. (B-8) and Integra- 
n    o 

ting Eq. (B-8) gives 

r    Vn(o) 

c L    c^ f) -^if W (B-9) 

Equation (B-9) is a quadratic in p which can be written in the form 

T = i P + ß P (B-10) 

On substituting Eq. (B-3) into Eq. (B-9) one finds 

2      2 
T = A, X + A„ Y + A, X Y + A. X" + A, Y (B-U) 

The coefficients A. are given by 
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A     =   (-,   sin 0 cos     )   d 

A    =   (>   sin 0 sin  B)   <J 

A3  =   (23   sin"  0 sin 0   cos   0)   cT 

9 9 0 
A,   =   (p   sin" 0 cos 9)   d" 

2 9 9 
A    =   (r  sin" iÖ sin" B)   d" 

vn(o). 
L'--r-! 

(B-12) 

'i   = 

d = J_    cos g^    i!£ +  K 

2 2       Idx  +  Kl/ 

(B-13) 

Define   the  effective   ground   trace  velocity   c     In 
8 

-1 
^ s in () 

Then estimates of botli c  and 9 may be obtained as li.llows; 

Note that 

tan G = 

d c "M ; 

= tan"  (A2/ALy 

2    2 
A1 + A2- 

(B-14) 

(B-15) 

Thus the estimates of A and A0 provide estimates of the bearing 

angle 0 and the effective ground trace velocity.  The quantity T  is 

the time for the wave to travel a distance d on the ground. 

If ß ■ 0, so that the linear model for T can be used, the amount 

of data processing is reduced and the rms of the estimates of 9 and 

T  is decreased.  From Eq. (B-ll) 

■--.■- 
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From Eq. (B-12) 

o P \1 + :■  P) 

9     2 

V + A2^ 
d sin ^ 

A4 + A5 
9    2 

d" sirT 0 

so that Eq. (B-16) can be written 

1  + 
A4 + A5 

—   d  sin (Ö 
Al     +A2 

(B-16) 

(B-17) 

(B-18) 

The value of p/d   sin 0   is  clearly  determined   from Eq.   (B-3)   as 

p/d  sin (i = X cos  » + Y  sin 9 

so   that   the maximum magnitude of p/d  sin 0  =   the maximum normalized 

dimension of  the  array.     Let  this  characteristic value  be  D where 

D = max 
d  s —] in 9/ 

6,  x.,  y. 

Tlien,   it 

AA + A5 

2 2 
A1    +A2 

D < < 1 

one may  take fi  =  0,   and  therefore A    = A.   = A^  = 0,  and use   the 

linear model. 
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Appendix C 

BEARING ANGLE ACCURACY 

The relationship between the bearing angle G and the coefficients 

of the curve '"it A , A is given in Eq. (B-14).  This relationship is 

nonlinear. However, if the errors in the coefficients are small, 

then the errors in n can be determined as follows 

tan  0  = A-/A 

Zv ■ cos     8 

1    (AJAAJ   -  A1AA2} 
(C-l) 

where ^9  is  the  random error  in 8 due   to  random errors AA,   and M9   in 

the parameter estimates  A,   and   K-.     Since   E(AT.)   =  0,   then  E(AA  )   =  0, 
1 2 i j 

j   ■   1,   2,   3,   ... ,   5,   and  F.(äQ)   =  0.     Then 

where  B9  is   the  2x2   submatrix of  the covariance matrix  given by 

Eq.   (A-7)  or Eq.   (A-9);   e.g. 

B2   = 

Bll  B12 

B21  B22 

bll  b12 

b21  b22 

where   the b..  are   the  normalized covariance  E(AA.   'A.)  = b. 

(c:-2) 

(C-3) 

(C-4) 

b^ 1 . 1 

The value of A. used in the estimation is matched to the appropriate 

choice of p for a given (j to determine which B matrix to use. 

From Eq. (B-12) 
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A, = T cos 9, A = T sin 9, (C-5) 
1   o 2   o 

so that 

2 
E(A02) = {^—'j    -[cos2 9 b11 + sin

2 9 b22 - 2 b12 cos 9 sin e}       (C-6) 
o 

Define 

,2(9).Itts!i. (C-7) 
(c-/ 

the  normalized variance of  9. 
2 

Equation   (C-6)   shows  that E(A9  )   is  inversely proportional   to 

T   ,   the  ground   transit  time of   the wave  over  the distance  given by 

the  scale   factor  d.     Assuming d  to be   fixed   (say  the x,   y  coordinate 

distance  between adjacent  stations  in a  square array),   then T    -»0 

as 0 - 0.      (See  Fig.   1.)    In  this  case   the  ground  trace velocity is 

infinite  and  9  becomes  indeterminant,   as   is  expected.     Thus,   it  is 

required   to  limit jft  so  that 0^0    before an attempt   to  estimate  9 1 o 

is considered.  Define 

c  =V/E(A9 ) ■ *- * L(9) in radians 
o 

L(9) is shown in Tables I and 2 and gives tlv. bearing angle accuracy 

in radians. 

From Eq. (C-6) note that if b  = b 

E(A92) - (^-) [b11 - 2 b12 cos 9 sin 9} (C-8) 
o 

so that L(9) is symmetrical with respect to 9 = 45 .  When the 

stations are placed symmetrically with respect to the line y = x, 

^- 
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then it is obvious that one may interchange y and x and demonstrate 

that hii  =  b22 so t:hat thG s>Tranetry conditions given by Eq. (C-8) 

hold. 

Finally, Eq. (C-l) seems to require 9 - 11/2.  However, one can 

define cotan 9 = ^M* and derive Eq. (C-6) as the end result so that 

Eq. (C-6) does hold for all 9. 

TRANSIT TIME ERROR 

From Eq. (B-L5) 

AT = — - 
O T 

O 

so that 

E(AT ) =0 
o 

2    2 -      2 2 
E(ATO ) = 3  •b11 cos  0 + b22 sin 8 + 2cos 9 sin b12] 

If bll = b22' whicl1 holds for stations symmetrically placed with 

respect to the line Y = X 

E(AT ) 2 
 ^2— = [b11 + 2 cos 9 sin 9 b^] = M^(9) 

c 

The normalized variance M (9) is symmetric with respect to 9 = 45°. 

Note that when 

(C-9) 

(C-10) 

(C-ll) 

9 = 0 or  9  = TT/2,       M(e)  = L(9) (C-12) 

for any value  of  9 

2 2 
M (9)   -  L  (9)   =  4b12   sin a  cos  0 (C-13) 

and   therefore 

« 

»1- 
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^(G) - L2(e) ^ 2 b.. (C-14) 

the equality sign holding for 9 = 45 when the symmetry conditions 

b   = b  hold and 

M2^) + L2(e) = 2 b11 (C-15) 

independent of 9. 

Table 3 presents M(9), 9 = 45 , for the linear and quadratic 

case with k from .125 to 256 and values of N as indicated. 

L       * 



i 
26 

C1 

i-H 

IT) 
H 

in 

O 
rn 
,—i 

• 

QO 

• m • 

CM 
00 

1 
in 

m 

O 

in 
CN 
ON 
rn 

co 

3 

X 

• 

1
.U

U
U

1
 

0
.9

1
4
0

 

X 

CN 
in 

X 

-t 

• 

O 
m 
r—< 

CO • 

oo 
i—i 

o 
• 

CN 

o 
30 

CN 

CO 

• CM • 

m 
X 

m • 

n 
p 
o 
o 

C3N 

ON 

O 
1 

m 

• 

00 
• 

o 
• 

.—i 

oo 

• 

O 

CM 

a 
o 
m 
m • 

CNJ 

• 

X) 
o o       o 

O               ON 

i—i       ^ 

ON 

X) 

<t 

CM 

m 
CNI • O • 

m 
CN • 

in 
m 
ON o • 

f-i 

ON 

O 

00 

» 

in 
.—i 

o 5 • 

1  

r^ 
X 
X 
X • 

CN 
X3 
r^ 

• 

CN • 
i—I 

o • 

00 

CN • 
3 

be 
CN 

O • 

■a 

CNJ • 
3 

o 
00 

• 

ON 
m 

• 

m 

o 
o 

oo ■       —' 
ON 1     n 

Xl              ^ 
•1 

Oi        - 

rmi i—i • 
3 

m 

o 
o • 

m 

• 
O 

o 
00 
o 5 • 
PH 

—J 

en 
CO 

• 

o 
ON 

• 
a 

• 
3 

• 
X 

• 
o 

X 

o 

Ln 

X) 
CM 

• 

CN 
00 r—( 

o 
o 

ON 

ON 
CN 

O 
o • 

X 
x> 

• 

5 5 

m 
ON 

O 

CN 
in 
o 

• 

in 

• 

in 

.—i • • 
OJ 

• 
O 

• 
o 

CN 
o 
O 5 • 
i—i 

O 
m 
m • # 

in 
X 
C*1 
in 5 

in 

f—i 

■ 

in 

I—i • • 

m 

• • 

m 

o 
■ , 

X) 
X 
m 
m • 

X 

in • 

/    * 

"Z. QL' X M 2 Qi S Bd S ai 

m r^ m 
t—i 

r^ in 

j M X w < oi 0^a<OM<HHU 

o 
CO 
u 

"0 

en 
CO 

■o 

X 

u 
4-1 

to 
E n 

1-1 u 
o CO 

U-l 4^ 
tn 

-—s 
I) <4-l 

N-^ Q 

rf*- 
(-1 

U-l 0J 
o X. 

H o c 
u 
(0 o 
Jj £ 

4-1 
04 
£ (0 
4-1 •d 

* 

'J 



27 

Appendix D 

COMPUTATION   OF  NORMALIZED  BKARING  ACCURACIES 

L(^)   and  MC")  FOR A  SQUARE  ARRAY 

In  Lliis  appendix   computations  of  L(p) ,   the  normalized  bearing 

accuracy,   and M(9),   the  normalized  ground   trace   timing accuracies   given 

by   Eq.   (C-ll),   are  described   for  a  specific   array  configuration   shown 

in  Fig.   2. 

The  numbers   in Fig.   2   show  the normalized  coordinates   (X,   Y)   and 

station  index number. 

For  the   linear  case,   L^)   and  K(9)   are   computed   for  the   first 

four  stations   (N  =   3),   the   first   eight   stations   (N = 7),  which   includes 

the  previous   stations,   and  all   Che   stations   (N =   15). 

For  the quadratic   case,   K/1)   is   computed   for N =  7   and  N  =   15 

defined  over  the   same   set  of  stations   as   in   the   linear  case   for 

corresponding N. 

Computations  are  performed   for G   =  0   ,   15   ,   30    and  45     for 

va lues of the correlation parameter k = (2)J, j = -3 to 8, in steps 

of 1.  For small values of k (.125 or .25) the effect is essentially 

the same as taking v = I, so that this case will not be computed sepa- 

rately.  For large values of k, the ^T. errors at each station are 

heavily correlated, and one may note the effect of using a mismatched 

processing such as least squares on this data versus using the matched 

processing, p v "I, of Eq. (7d).  The Fortran program from which L(P) 

and MC3) are computed is shown on the following pages.  Figures 3 to 

12 present the L(9) values graphically for possible interpolation and 

visual comparison.  Tables 1 to 3 present numerical results of the program. 

■■   •—rmmma^tmmxm^mammmmm^rw^rr-"   " 
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Note that the Fortran program is sufficiently general to handle 

an arbitrary set of stations and not just the square array described 

above, provided N ^ 2 in the linear case and N ^ 5 in the quadratic 

case, and not all the stations are colinear. 

- 
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C 
c 
c 

PROGRAM TO COMPUTE NORMALIZED BEARING ACCURACY AND NORMALIZED GROUND 
TRACE TIMING ACCURACY EOR LEAST SQUARES AMD •MNP'IIM VARIANCE CASES« 

REAL K 
DIMENSION Zl«S5)tZ2C35|f23«35»»2M35)»75l35)»NN(35>»CAYIS5lfTMET(3 
15)»S(lfn.Zl3S,35).R(35»35)»SINE(?S),COSlNEnM.PSn?5»35)»P(3 5»35 
2).ZT(35.35)»ZTZ{3!J»35)tZll(35f^tj)»Z]2(-;>t3.3,5).Zl3(35.3,5),b(35»35).Z 
321(35»35)»C(35.^5)tCT(30.35)»Z31(^tS.^«5).EL£Q(^5»35)»EL(?5).Z41(35. 
43 5).EMSO(33«35)•EMI35>»IRIVOT(35l•INDEX<35»2»fELLC35l«EMM(35J»ELR< 
535)»EMR(35) 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
READ 
EOR^AT 
EORMAT 
EORMAT 
EORMAT 
S11 • 11 

N2«LB2»LC2ffLI2.LA2,LE2 
IZ1 (N) .N=l ^2) 
(Z2(N)»N«!»NZ) 
(Z3(N)»N=1»N2) 
(Z4(N),N=1•N2) 
( Z 5 (rn «N = 1 » N 2 ) 
(NNILB).LR=1 .LR?) 
(CAY(LC) .LC = 1 .LC2I 
(THET(LI ) .LI=ltLl2) 
18E4.0) 
18IA1 
8E9.3 ) 
12F6.2 ) 
1. 

C 
C Z MATRIX (N2 X 5) IS EOR^H. 

10 

DO 
DO 
IF 
IE 
IE 
IE 
IE 

10 
10 

I = lf5 

N«l.N2 
( I .FQ.l ) 

(I.F0,2) 
(I .E0.3) 
(I.FQ.4) 
( I .'>..5 ) 

Z (N* 
Z (N» 
Z (N» 
Z (N» 
Z (N. 

• Z1C N) 
=Z2(N) 
»Z3(N) 
=Z4(N) 
=25{N) 

C 
C 

c 
C 

R MATRIX IK2   X N2) IS FORMED. 
DO 20 1=1tN2 
DO 20 N=1,N2 

20 R(I.N)= SQRT( (Zl( I )-.7l (N) )**2 + (Z2( 1)-Z2(M )*»2) 

SINE AND COSINE VALUES ARE CALCULATED HERE TO SAVE TIME, 
PAD»1.7453292SE-2 
DO 25 LI«1 .LI2 
THETA»THET(LI)*RAD 
SINE(LI)«SIN(THETA) 

25 COSINE(LI)»COS(THETA) 

■r^'-     ~:—zrr -—— J'T ^ 
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C 
C 
c 
c 

c 
c 

c 
c 

PROBLEM BEGINS. 

LINEAR WHEN LA=1» QUADRATIC WHEN LA=2. 

DO 100 LA«liLA2 
IF (LA.NE.l ) GO TO 2 7 

LP1 = 1 
M = 2 
GO TO ?8 

21   LRl»? 

A VALUE OF N IS PICKED. 
28 DO lOü LB = LB1 ♦LB2 

N=NN(LB) 

A VALUE OF K IS PICKED. PSI MATRIX (N X N) IS FORMED. 

DO 100 LC=1»LC2 
K=CAY(LC) 
IF (LA.FQ.l) PRINT 2000»N.K 
IF (LA.C0.2) PRINT 200l.N»< 
FORMAT(1H1.2X,6HLINEAR.^X.2HN«I2.4X»2HK«F8.3///) 
FORMAT(1H1,2X.qHQUADRATIC.AX.2HN=I?.4X.2HK»F8.3///) 

DO 30 LE=1.N 
DO 30 LD=1»N 
PSKLD.LE) =EXP(-R(LD.LE)/K) 
P(LD.LE)»PSI(LD.LE) 

2000 
20U1 

C 
C 
C 
C 
C 
c 
c 
c 

30 

(MISMATCHED) CASE 1.  RHO MATRIX = IDENTITY (N X N) IS FORMED. 
2T MATRIX IM X N) » Z (N X M) TRANSPOSE IS FORMED. 
ZTZ MATRIX (M X M) = MATRIX PRODUCT OF ZT AND Z IS FORMED. 
ZTZ INVERSE MATRIX (M X M) IS FORMED. 
B (NORMALIZED COVARIANCE MATRIX - M X M) ■ MATRIX PRODUCTS OF 
ZTZ INVERSE (M X M)» ZT (M X N)» PSI (N X N)f Z (N X M). ZTZ INVERSE 

(M X M) IS FORMED. 
DO 80 LF«1♦LF2 
IF (LF.NE.l) GO TO 50 
DO ^0 I^ltM 
DO 40 J«ltN 

4J ZT(I.J)»Z(J» I ) 
CALL MATMUL (ZT.M.N»Z»M.ZTZ ) 
CALL MATINV (ZTZ.M♦S»0♦IPIVOT.INDEXtISING) 
IF (ISING.NE.O) GO TO 71 
CALL MATMUL (ZTZ.M.M.ZT,N»Z11) 
CALL MATMUL ( ZU .M . N. PSI »N . Zl 2 ) 

■ • 

^ 
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(Z12,M,N,Z,M,Z13) 
(Z13,M,y,ZTZ»MtB) 

CALL MAT^IUL 
CALL MATMUL 
PRINT 1002 

1002 FORMAT(1H0,4X,1QHCASF 
PRINT 1003 

10Ü3 FORN'AT(//7X»32HR (NORMALIZED 
DO ^ 1 = 1 ,M 

43 PRINT 1004»(B(I»J).J=l»M) 
1004 FORMATdH ♦ F 1 7 . 8 »4F 1 5 . fl ) 

GO TO 60 

1 (MISMATCHFD) ) 

COVARIANCE MATRIX)/) 

C 
c 
c 
c 
c 

CASE 2.  RHO MATRIX (N X N) = 
PSI INVFRSE MATRIX (N X N) IS 
B (NORMALIZED COVARIANCE 
N). PSI INVERSE (N X N) 
50 CALL MATINV 

IF (ISING.NE 
CALL MATMUL 
CALL MATMUL 
CALL MATINV 
IF (ISING.NE 

PSI INVERSE. 
FORMED. 

MATRIX - M X M) ■ 
» Z (N X M) INVERSE 

(P,N.S»0»I PIVOT»INDEX»I SING) 
.0) GO TO 72 
(ZT»M»N»P»N»Z21) 
(Z?l»M,N»Z»MfR) 
(B»M»S»0»I PIVOT»INDEX»I SING) 
.0) GO TO 7 3 

(MATCHED) 

MATRIX PRODUCTS OF 
IS FORMED. 

ZT (M X 

C 
c NORMALIZED COVARIANCE MATRIX B IS PRINTIP OUT 

PRINT 1C05 
10Ü5 F0RMAT(//4X»16HCASE 2 (MATCHFD)» 

PRINT 1003 

51 
DO 51 I»l»v 
PRINT 1^04»(B(I»J)»J»l»M) 

C 
C 
C 
C 
C 

FOR MISMATCHED AND MATCHED CASES» NORMALIZED BEARINO ACCURACY FL» 
NORMALIZED GROUND TRACE ACCURACY EM» AND PATIOS OF 

LR » EL (MISMATCHED) / EL (MATCHED) 
MR .= EM (MISMATCHED) / EM (MATCHED) 

60 DO 62 LI=1»LI? 

C(l»l)=COSINE(LI) 
C(2»l)=-SINE(LI ) 
C(3»l)«0. 
CU.l )»0. 
C{5»1 )»0. 
CT(1»1)«C0S1NE(LI) 
CT(1»2)«-SINE(LI) 
CT( 1 »3)«0. 
CT(1»4)«0. 
CT(1»5)«0. 
CALL MATMUL (CT»1»M»B»M»Z31) 

AND 
ARE PPINTFD OUT. 

»r 
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62 
1006 

71 
10Ü7 

72 
1008 

73 
1C09 

8u 

81 

90 
1010 
100 

CALL 
FL(LI 
C(2»l 
CTCli 
CALL 
CALL 
EMCLI 
IF (L 

FLL(L 
EMM(L 
PRINT 
FORMA 
GO   TO 
PRINT 
FORMA 
GO TO 
PRINT 
FORMA 
GO TO 
PRINT 
FORMA 
CONTI 
PRINT 
FORMA 
no 90 
FLR(L 
FMR(L 
PRINT 
FORMA 
CONTI 
CALL 
END 

MATM 

|«SQ 
)=SI 
2 )»S 
MATM 
MATM 
)=SQ 
F.NE 
I )*E 
I ) = E 
100 

T  ( 
80 
100 
TUM 
80 
100 

T( 1H 
80 
100 

TC1H 
NUE 
81 

T( IN 

LI = 
I ) = F 
I ) = E 
101 

Tl 1H 
NUE 
EXIT 

UL (Z31fl.M.C.l»ELSQ) 
RT{EL^Q(1»1)) 
NE(LI) 
INE(LI) 
UL (CT»1»MibtM.Z41) 
UL (ZM.ltM.C»! .EMSQ) 
RT(FMSQ(1,1)) 
.1 ) GO TO 62 
L(LI ) 
M(LI ) 
6»THFT(Ll)»FL(Ll)»THET(Ll).r^(LI) 
/(7X,?HL(F6.?,2H)=F12.8,4X»2HM(F6.?.2H)=F12.8)) 

C»4X.24H2TZ INVERSE IS SINGULAR.) 

8 
C,^X.2^HPSI INVERSE IS SINGULAR.) 

0»4X.30HB MATRIX (CASE 2) IS SINGULAR.) 

0) 
1 .LI2 
LL(LI)/EL(Ll) 
MM(LI)/EM{Ll) 
C ♦THET(LI).ELR(LI) »THETCLI ) .EMR(LI) 
f4X,3HLR(F6.2.2H)«F12.8,4X.3HMR(F6.2,2H)=F12.8) 

-4 
r 
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C 
c MATRIX MULTIPLICATION 

SUBROUTINE MATMUL (A.N ,N»R♦L»C) 
DIMENSION A(35I^5).R{35I35) iC139«1^1 
DO 20 |«ltM 
DO 20 K«1,L 
SUM=0. 
DO 10 J=1.N 

10 SUM»SUM+A(I»J)»B(J.K) 
20 C( I.K)«SUM 

RETURN 
END 

c 
c 

c 
c 

5 
15 
20 

BIG 
30 
35 
40 

45 
50 

60 
70 
80 
85 
90 
95 

100 
105 
107 

MATRIX INVERSION WITH ACCOMPANYING SOLUTION OF LINEAR 
SUBROUTINE MATINVIA.N.R,M,IPIVOTtINDEX.IS1NG) 

EQUATIONS 

DIMENSION A(35.35).B(1.1) .IPIVOT(35).INDEX(35.2) 
EQUIVALENCE (IROW.JROW). . ICOLUM.JCOLUM) .        (T. SWAP) 

INITIALIZATION 
ISING « 0 
DO 20 JM.N 
IPIVOT(J)«0 
LOOP ON I 
DO 550 lal.N 
I ROW » 0 
AMAX«0,0 
SEARCH FOR PIVOT ELEMENT 

J«1.N 
IPIVOT(J),E0.1 )  GO TO 105 

K»l .N 
IPIVOT(K).EO,l ) GO TO 100 

IF (ABS(AMAX).GE.ABS(A(J.O) ) 
IROW«J 
ICOLUM-K 
AMAX«A(J.K) 

CONTINUE 
CONTINUE 
IF (IROW.EQ.O) GO TO 750 

DO 105 
IF ( 

DO 100 
IF ( 

GO TO 100 

• . 

■ 
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C 
C 
c 

c 
c 

c 
c 
c 

110 IPIVÜK ICCLUM) = 1 

INTERCHANGE ROWS TC PUT PIVOT ELEMENT ON DIAGONAL 

no 
150 
160 
170 
200 
205 
210 
220 
230 
2 50 
260 
270 

330 
340 
350 
355 
3 50 
370 

C 
c 
c 

IF IIROW.EO.ICOLUM ) GO TO 260 
no 2CQ L«1»N 
5WAP=A(IROWtLl 
A([ROWtL)=A(ICOLUMtLI 
ä(rCOLUMtL)"SWAP 

IF (M.LF.O)  GO TO ?60 
DO ?50 L=l. M 
SWAP = B(IROW.L ) 
B(IROWtLl■&(ICOLUMtL1 
B( ICOLUW.L)=SWAP 
INDEX!1,1)=IROW 
INDFX( I ,;? ) = ICOLUM 

OIVIOF PIVOT ROW MY PIVOT ELEMENT 

A( ICOLUMtICOLUM)a].0 
DC ^50 L=ltN 
A( I COL UM, L ) = M I COLUMtL )/AMAX 

IF (M.LF.O)  GO TO 380 
DO 370 L=ltM 
B(ICOLUM,L)=b(ICOLUM,Ll/AMAX 

COMPLFTF THE PIVOT 

38C DO 55o L 1 = 1 »N 
390   IF (LI.FQ.ICOLUM) GO TO 550 
400 T=A(LI»ICOLUM) 
420 (ULItICOLUM}«Ü^O 
430 DO 450 L = l tN 
450 A(L1-L)=A(L1»L)-A(ICOLUM,L)»T 
455   Ii  (M.LF.O)  GO TO 550 
460 DO 500 L«1»M 
500 F3(L1»L)=H(L1»L)-R( ICOLUM,!. )*T 
550 CONTINUE 

INTERCHANGE COLUMNS 

600 DO 710 !»1,N 
610 L»N+1-I 
620   IF ( INDFX(L,1 ).EQ.INDEX(L.2) 
630 JROW=INDEX(Ltl) 

) GO TO 710 

• 
■ 
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640 JCOLUM=INnFX(L.2) 
650 DO 705 K«1»N 
660 SWAP»A(K,JROW) 
67U ACKtJR0W)«A(<.JC0LU^) 
700 A(K»jCOLUrMsSWAP 
705 CONTINUF 
710 CONTINUF 
740 RFTURN 
SINGULARITY FL&G 
750 ISING ■ I ♦ N - I 
760 GO TO 740 

FND 

trr •m—K- ..^ 
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INPUT 

Input       Variable Explanation  of Variable Restriction     Input 
Order Name Format 

1 N2 Total  number of   stations ^ 36 1814 

1 LB2 Number of  sets  of  stations 1814 

1 H2 Number of  8  values <  35 1814 

1 LC2 Number of  k  values <  35 18X4 

1 LA2 Linear case only when LA2=1, 1814 
linear and  quadratic  case 
when LA2=2 

1 LF2 Mismatched  case only when LF2=l, 1814 
mismatched  and matched  cases 
when LF2=2 

2 Zl x  coordinate  of  each   station ^  35 18F4.0 

y   coordinate  of  each   station ^  35 18F4.Ü 

Product  of x  and  y   coordinates 
of each  station 18F4.Ü 

2 
x     of  each  station 18F4.0 

2 
y     of  each   station 18F4.0 

Number of  stations minus  one       NN>2   for 
used   in  each   set linear 

NN-5   for 
quadratic        1814 

8 CAY Correlation  parameter 0<k<lU,ÜÜÜ       8F9.3 

9 THET Bearing angle  of plane wave 
in degrees 12F6.2 

3 Z2 

4 Z3 

5 Z4 

6 Z5 

7 NN 

The  program is  designed   to  handle   the  parameters   as   indicated by  the 
restrictions.      The progrdm however  has  not  been  checked   to  the   limit 
of these   restrictions.     Computations   for  the  cases  presented   in  this 
report   have  been  checked.     Other  cases  may  require  additional   verifica- 
tion. 

. i •m.^^m^^mnimm     JUI M '..    ■■ .,-rr —    ■ —~m 
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15         3 12 4 2 2 N2 

3.      3. 0. 1. 3. ?. 3. 2. 1. 2. 0. ?. 1. 0. 

0.      3. 3. 3. 1. ^. 2. 2. ?. 1 . 2. 0. 0. 1. 

0.       0. 0. 3. 3. 6. 6. 4. 2. 2. ^ o. 0. 0. 

9.      9. 0. 1. 9. 4. 9. 4. 1 . 4. 0. 4. 1. n. 
0,      9. 9. 9. 1. 9. 4. 4. 4. 1. 4. 0. 0. i. 

3         7 15 
.1?^ .25 .5 1. 2 . 4. 6. 

32. 1 54. 128. 256. 
0.         15 • 30. A5 . 

Lb 2   LC2   LI2   LA2   LF? 
Zl 
12 
Z3 
Z4 
Z5 
N 

16. CAY 

CAY 

THTTA 

OUTPUT 

N =     Number of   stations minus  one 

K ■ 

US) = 

M(0) = 

LR(e-) = 

Correlation parameter 

Normalized bearing angle accuracy 

Normalized ground trace timing accuracy 

L(-) 
mismatched 

U(-) v 'matched 

MR(6) 
K(e) 

mismatched 
M(-) matched 

T""* 
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Sample  Output 

LINCAR \=    ? Km 1 .000 

CA^r   i    (MISMATCHED) 

B    (NORMALIZED   COVARIANCE   MATRIX) 

0.07459377 
•0.0349PÜ71 

L( 
L( 
L( 
L( 

0.  ) = 
15 • C 0) ■ 
30»or) = 
45.or ) = 

-0.03492071 
0.07459377 

0.27311Ö60 
0.303404?? 
0.32378387 
0.33092972 

M( 0.  ) 
M( 15.00) 
M( 30,00) 
M( 45.0^) 

0.27311860 
0.23902597 
0.21059807 
0.19918097 

CASE 2 (MATCHED) 

B    (NORMALIZED   COVARIANCE   MATRIX) 

0.07457582 
-0.0^493867 

L ( 0 «       ) = 
L( 15.)0)= 
L( 30»C0)" 
L( 45.C^)= 

L R ( 0 .       ) = 
LR( 15.U0)= 
L R( 3 0.00) = 
LR( 45.^0)= 

-0.034P3867 
0.07457582 

0.27108573 
0.30338944 
0.32378016 
0.33092973 

1.00012037 
1 .00004874 
1 .00001143 
0.99099996 

M( 0.  )= 
M( 15.00)*: 
M( ^0.0^)= 
M( 45,00)» 

MR{ 0.  )= 
MR{ 15.00)= 
MR( ?0.00)= 
MR( 45.00)= 

0.27308573 
0.23896962 
0.210518 50 
0.19909079 

1.00012037 
1.00023580 
1,00037797 
1,00045294 
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45 

Fig.4—Normalized rms bearing angle accuracy versus bearing angle 
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1.5 
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Mismatched case 
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k      256 
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———— linear case 
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Fig.5—Normalized rms bearing angle accuracy versus bearing angle 
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1.5 
LN = 7 
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I 
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Pt ■ I 

k = 0.125 

case 

N +  1  = number of   _ 
stations 
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- 
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- 

■—                     ID 
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45 

Fig.6—Normalized rms bearing angle accuracy versus bearing angle 
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Fig.7—Normalized rms bearing angle accuracy versus bearing angle 
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